locally unipotent - definição. O que é locally unipotent. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é locally unipotent - definição

ONE PLUS NILPOTENT ELEMENT
Unipotent radical; Unipotent element; Unipotent matrix; Quasi-unipotent; Unipotent matrices; Unipotent group; Unipotent algebraic group; K-Unipotent groups for a field k and its completion; Unipotential

Unipotent         
In mathematics, a unipotent element r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.
Locally convex topological vector space         
TYPE OF TOPOLOGICAL VECTOR SPACE
Locally convex; Locally convex space; Locally convex spaces; Locally convex topology; Locally convex basis; Locally convex vector space; LCTVS; Finest locally convex topology
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets.
Semi-locally simply connected         
  • The [[Hawaiian earring]] is not semi-locally simply connected.
Semilocally simply connected; Semi-locally simply connected space
In mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X.

Wikipédia

Unipotent

In mathematics, a unipotent element r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

In particular, a square matrix M is a unipotent matrix if and only if its characteristic polynomial P(t) is a power of t − 1. Thus all the eigenvalues of a unipotent matrix are 1.

The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.

In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural group representation. A unipotent affine algebraic group is then a group with all elements unipotent.